Carbohydrate loading, commonly referred to as carb-loading or carbo-loading, is a strategy used by endurance athletes, such as runners, to maximise the storage of glycogen (or energy) in the muscles and liver.
Carbohydrate loading is also used in healthcare to optimise the condition of patients prior to colorectal surgery.
Carbohydrate loading is generally recommended for endurance events lasting longer than 90 minutes. Many endurance athletes prefer foods with low glycemic indices for carbo-loading due to their minimal effect on serum glucose levels. Low glycemic foods commonly include vegetables, whole wheat pasta, and grains. Many marathoners and triathlon participants have large pasta dinners the night before the race. Since muscles also use amino acids extensively when functioning within aerobic limits, meals should also include adequate protein. Large portions before a race can, however, decrease race-day performance if the digestive system has not had the time to process the food regimen.
Video Carbohydrate loading
Without depletion
Research in the 1980s led to a modified carbo-loading regimen that eliminates the depletion phase, instead calling for increased carbohydrate intake (to about 70% of total calories) and decreased training for three days before the event.
Maps Carbohydrate loading
Short workout
A new carbo-loading regimen developed by scientists at the University of Western Australia calls for a normal diet with light training until the day before the race. On the day before the race, the athlete performs a very short, extremely high-intensity workout (such as a few minutes of sprinting) then consumes 12 g of carbohydrate per kilogram of lean mass over the next 24 hours. The regimen resulted in a 90% increase in glycogen storage when compared to before the carbo-load, which is comparable to or higher than the results achieved with other 2 day - 6 day carbo-loading regimes.
Transient hypoglycemia
Carbohydrate ingestion within 2 hours before aerobic exercise triggers elevated levels of insulin in the blood which may dramatically decrease serum glucose levels. This can limit aerobic performance, especially in events lasting longer than 60 minutes. This is known as transient or reactive hypoglycemia, and can be a limiting factor in elite athletes. Individuals susceptible to hypoglycemia are especially at risk for elevated insulin responses and thus will likely suffer from performance-limiting transient hypoglycemia if they do not follow the correct regimen.
Diet composition
The composition of carbohydrates in the athlete's diet during carbohydrate loading is as important as their share of the overall caloric intake.
Most dietary carbohydrates consist of varying proportions of two simple sugars, glucose and fructose. Fructose may be metabolized into liver glycogen, but it is ineffective at raising muscle glycogen levels (which is the objective of carbohydrate loading). Consequently, sources of high-fructose carbohydrates, such as fruit and sweets, are less than optimal for the task. The classic carb-loading meal is pasta, whose caloric content is primarily due to starch, a glucose polymer. High-glucose meals which include bread, rice, and potatoes are all part of the correct regimen.
References
Further reading
- Wax, Benjamin; Brown, Stanley P; Webb, Heather E; Kavazis, Andreas N; Kinzey, Steve (2011). "Effects of Carbohydrate Supplementation on Force Output and Time to Exhaustion during Static Leg Contractions Superimposed with Electromyostimulation". Journal of Strength and Conditioning Research. 26 (6): 1. doi:10.1519/JSC.0b013e318234ec0e. PMID 21912287.
- Hawley, John A.; Schabort, Elske J.; Noakes, Timothy D.; Dennis, Steven C. (1997). "Carbohydrate-Loading and Exercise Performance". Sports Medicine. 24 (2): 73-81. doi:10.2165/00007256-199724020-00001. PMID 9291549.
- Sedlock, Darlene A. (2008). "The Latest on Carbohydrate Loading: A Practical Approach". Current Sports Medicine Reports. 7 (4): 209-13. doi:10.1249/JSR.0b013e31817ef9cb. PMID 18607222.
- Burke, Louise M.; Millet, Gregoire; Tarnopolsky, Mark A.; International Association of Athletics Federations (2007). "Nutrition for distance events". Journal of Sports Sciences. 25: S29-38. doi:10.1080/02640410701607239. PMID 18049981.
- Bentley, David J.; Cox, Gregory R.; Green, Daniel; Laursen, Paul B. (2008). "Maximising performance in triathlon: Applied physiological and nutritional aspects of elite and non-elite competitions". Journal of Science and Medicine in Sport. 11 (4): 407-16. doi:10.1016/j.jsams.2007.07.010. PMID 17869183.
- Hatfield, Disa L.; Kraemer, William J.; Volek, Jeff S.; Rubin, Martyn R.; Grebien, Bianca; Gómez, Ana L.; French, Duncan N.; Scheett, Timothy P.; et al. (2006). "The Effects of Carbohydrate Loading on Repetitive Jump Squat Power Performance". The Journal of Strength and Conditioning Research. 20 (1): 167-71. doi:10.1519/R-18300.1. PMID 16503677.
- Havemann, L.; West, SJ; Goedecke, JH; MacDonald, IA; St Clair Gibson, A; Noakes, TD; Lambert, EV (2006). "Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance". Journal of Applied Physiology. 100 (1): 194-202. doi:10.1152/japplphysiol.00813.2005. PMID 16141377.
- Andrews, Jessica L.; Sedlock, Darlene A.; Flynn, Michael G.; Navalta, James W.; Ji, Hongguang (2003). "Carbohydrate loading and supplementation in endurance-trained women runners". Journal of Applied Physiology. 95 (2): 584-90. doi:10.1152/japplphysiol.00855.2002. PMID 12716874.
- Bussau, Vanessa; Fairchild, Timothy; Rao, Arjun; Steele, Peter; Fournier, Paul (2002). "Carbohydrate loading in human muscle: An improved 1 day protocol". European Journal of Applied Physiology. 87 (3): 290-5. doi:10.1007/s00421-002-0621-5. PMID 12111292.
Source of article : Wikipedia